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Abstract A method for the calculation of the electronic
energy of a correlated system is presented. This approach
is based on the reconstruction of the total two-body reduced
density matrix by doing separate configurations interaction
calculations on fragments. The method has been tested on
Van der Waals systems and has been implemented by con-
sidering restrictive N -representability conditions. It is shown
that the computational strategy presented in this work can de-
scribe with good accuracy weak dispersion interactions, and
considerably lowers the size-consistency error of a classical
configuration interaction calculation.

1 Introduction

The problem of accurate ab initio calculations is mainly due
to their computational costs. By taking into account the corre-
lation effects, the computational cost grows rapidly with the
system size up to N 7depending on the correlated method con-
sidered [1]. This fact has been the starting point of research
works on N-scaling methods, that scale as a function of the
system size. In particular, SCF, DFT, and single-reference
(SR) correlated methods (like configuration interaction (CI),
coupled cluster (CC), or perturbative approaches) have been
implemented for a few years now into N -scaling algorithms
[2–8]. On the other hand, with the exception of recent works
of Carter et al. [1,7,8], little has been done in the field of
N -scaling multi-reference methods. This important research
framework is still largely unexplored.

Recently two independant works [9,10] on linear chain
of hydrogens have been published. In these studies, a hydro-
gen chain is decomposed into a set of overlapping subsys-
tems. The authors of both works used the formalism of the
reduced density matrices (RDM) in order to calculate the
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two-body RDM (2-RDM) of the whole system. In this way,
the total electronic energy can be retrieved, without the need
of a computation on the whole system. These approaches use
the fact that the two-body cumulant (2-CRDM), which rep-
resents the correlated part of the 2-RDM (in other words,
the 2-CRDM is the part of the 2-RDM which can not be
represented by a Grassmann product of the one-body RDM
(1-RDM) [11]), presents local properties for non-metallic
systems, and is additively separable [12]. Therefore, since
the 2-CRDM is for its major part restrained in a local re-
gion, the total 2-RDM can be approximated by the sum of
the local contributions of overlapping subsystems in the 2-
CRDM, the rest of the 2-RDM being estimated by the Grass-
mann product of the corresponding elements of the 1-RDM.
For this reason, methods based on 2-CRDM have in prin-
ciple a N -scaling behavior, provided one works with local
orbitals.

In this paper, the formalism related to the local property of
the 2-CRDM is presented. It is important to note that the pres-
ent method is based on wave function calculations on each
subsystem, which permit reconstruction of the total 2-RDM
of the system under interest and then to retrieve the average
values of any bielectronic operator (e.g., the electronic Ham-
iltonian). In this study, only single and double CI (SD-CI)
calculations on each subsystem were done, while keeping the
rest of the molecule frozen at the HF level. This work focuses
on the accurate description of dispersion effects, which are
the major source of interaction in Van der Waals systems.
As test cases, linear chains of Helium atoms and the He [4]
cluster have been considered.

This article is organized as follows: In Sect. 2, the gen-
eral formalism is presented. The problems related to the N -
representability of the 2-RDM are discussed in Sect. 2.1.
Some powerful necessary (but non sufficient) N -represent-
ability conditions, the D, Q, and G conditions [13] are pre-
sented. In the next subsection, the RDM formalism and the
N -representability problem are briefly recalled [13]. Then, in
Sect. 2.3, the general framework of our approach is presented.
In Sect. 3, the application to Helium clusters is reported. In
particular, linear chains of six atoms of Helium with a small
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basis set have been considered firstly (Sect. 3.1), followed by
an application of the method to the same linear chain and the
Helium cluster [4] in a larger basis set (Sect. 3.2).

2 General formalism

2.1 Reduced density matrix formalism

A summary of the RDM formalism is given in this sec-
tion, where the most important properties of these objects
are recalled. Since the present density matrix reconstruction
method implies only the 1-RDM and 2-RDM, we focus on
these two objects only.

In an orthonormal basis of spinorbitals and with |�〉 ei-
genfunction of Sz , the 1-RDM is defined in second quantifi-
cation by:
1�iσ

jσ = 〈�| a+
iσ a jσ |�〉 (1)

and the 2-RDM by:

2�
iσ jσ ′
kσ lσ ′ = 1

2
〈�| a+

iσ a+
jσ ′alσ ′ akσ |�〉 , (2)

where σ and σ ′ represent the spin labels and {i, j, k, l} the
spatial orbitals labels.

The total electronic energy can be expressed as a function
of the 1-RDM and the 2-RDM:

E =
σ,σ ′∑

i, j

1�iσ
jσ hiσ jσ +

σ,σ ′∑

i, j,k,l

2�
iσ jσ ′
kσ lσ ′ 〈iσ jσ ′ |kσ lσ ′ 〉 (3)

with hiσ jσ = ∫
i∗(x1) h(x1) j (x1) dx1, 〈iσ jσ ′ |kσ lσ ′ 〉 =∫ ∫

i∗(x1) j∗(x2) r−1
12 k(x1) l(x2) dx1 dx2, x1, x2 are the coor-

dinates of the electrons 1 and 2 upon the spin and orbital
spaces.

The 2-RDM has several interesting properties [14–19]:

1. it is symmetric under a permutation of a particle

2�
iσ jσ ′
kσ lσ ′ = 2�

jσ iσ ′
lσkσ ′ , (4)

2. it is antisymmetric under a permutation of a spinorbital

2�
iσ jσ ′
kσ lσ ′ = −2�

jσ iσ ′
kσ lσ ′ , (5)

3. it is hermitian
2�

iσ jσ ′
kσ lσ ′ = (2�kσ lσ ′

iσ jσ ′ )∗. (6)

In addition to these properties, implied by the creation and
annihilation operator formalism used in the definition, RDM
must be “N -representable,” i.e., obtained from a N -electron
wave function. Unfortunately, this N -representability prob-
lem is still unresolved for the 2-RDM [14,20–22]. On the con-
trary, as far as ensemble 1-RDMs are concerned, sufficient
and necessary conditions are known for ensemble 1-RDMs
[14] and are given by:

0 ≤ n p ≤ 1, (7)

where n p are the eigenvalues of the 1-RDM.

Further conditions can be imposed if the wave function
is eigenfunction of the number operator (it is the case of the
eigenfunctions of the Hamiltonian in non-relativistic quan-
tum mechanics). These are the “trace conditions” for the 1-
RDM and the 2-RDM:

Tr(1�) = N , (8)

Tr(2�) = N (N − 1)

2
, (9)

where N is the number of electrons.
Even though the N -representability conditions known for

the 2-RDM are only necessary, some of them are very restric-
tive as Mazziotti [21] or Nakata showed [22] in the frame of
the Contracted Schrödinger Equation formalism. The condi-
tions given below must be considered in addition to the Eqs.
(4), (5), (6), (7), and (8): the conditions known as D, Q, and G
conditions are formulated by using the two-electron density
matrix (D), the two-hole density matrix (Q) and the elec-
tron-hole density matrix (G) [20–22]. These matrices must
be all non-negative (non-negativity of a matrix means that all
its eigenvalues are greater or equal to zero).This is because
they can be expressed as metric matrices which can gener-
ate any mean value of a bielectronic operator [15,23]. These
non-negativity conditions can be reformulated as:

2 Diσ jσ ′
kσ lσ ′ = 〈�| a+

iσ a+
jσ ′alσ ′ akσ |�〉 = 22�

iσ jσ ′
kσ lσ ′ , (10)

2 Qiσ jσ ′
kσ lσ ′ = 1

2
〈�| aiσ a jσ ′a+

lσ ′a
+
kσ |�〉

= 2 Dkσ lσ ′
iσ jσ ′ − δl

j
1�kσ

iσ − δk
i

1�lσ ′
jσ ′

+δl
j δk

i + δl
j δk

i

+δσ ′
σ (δiσ

lσ ′ 1�
jσ
kσ + δ

jσ
kσ

1�iσ
lσ − δ

jσ
kσ δiσ

lσ ), (11)

2Giσ jσ ′
kσ lσ ′ = 1

2
〈�| a+

iσ a jσ ′a+
lσ ′ akσ |�〉

= −2 Diσ lσ ′
kσ jσ ′ + δl

j
1�iσ

jσ . (12)

In previous works [24,25], by imposing the D, Q, and G
conditions, it was possible to obtain quasi N -representable
2-RDM. Indeed, if these three conditions were not verified,
the total electronic energy could be even 100% lower than the
FCI one for the cases considered. On the other hand, when
these conditions were satisfied, the total electronic energy
was at most 5% lower than the FCI one. As a result of these
previous works [24,25], the D, Q, and G conditions (in addi-
tion to the conditions (4), (5), and (6)) were used to check
the quality of the reconstructed 2-RDM.

In the present work, the main interest of the 2-RDM is
given by its cumulant expansion. The cumulant expansion of
the 2-RDM can be defined as [26]:
2�

i j
kl =1 �i

k ×1 �
j
l −1 �i

l ×1 �
j
k +2 �

i j
kl , (13)

where 2�
i j
kl represents the 2-CRDM which is the two-body

correlation part of the 2-RDM [27,28]. The 2-CRDM van-
ishes when the two particles are statistically independent.
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The two-body correlation part of the 2-RDM is contained
in a small volume compared to the size of the problem studied.
This property has been studied in a previous work [10] with
linear chains of hydrogen atoms where the long-range corre-
lation effects, meaning non-negligible values of the 2-CRDM
at long distances, only occurred for metallic cases. This sim-
ple observation is the basic idea of the present two-body re-
duced density matrix reconstruction method.

It must be noticed that the 2-CRDM is extensive, con-
trary to the 2-RDM [28–30]. (A quantity is said to be exten-
sive when it is additively separable: the total quantity of a
system made of two non-interacting subsystems is equal to
the sum of the individual quantities of each subsystem.) For
this reason, this cumulant expansion can be advantageously
used to express the electronic energy of two weak interacting
subsystems.

2.2 The two-body reduced density matrix reconstruction
method (2-RDM-R)

The main idea of the 2-RDM-R is based on the expression of
the total electronic energy (3) and the cumulant expansion of
the 2-RDM (13).

It has been shown that for an insulator, the 1-RDM decays
as e−αr , r being the distance between two spinorbitals of
an element of the 1-RDM, 1 Diσ

jσ ′ and α is a function of the
HOMO–LUMO gap [31]. This property has been used by
Kohn [32] to propose a linear-scaling procedure to obtain
the total 1-RDM of a system treated as a sum of subsystems.
Indeed, the linear-scaling procedures using the density matrix
formalism deal only with the one-body density matrix. Nev-
ertheless, with the cumulant expansion, we can propose a low
computational cost procedure involving also the 2-RDM.

In the present work, SD-CI calculations are performed
on fragments of the system under study, while keeping the
remaining parts of the system frozen at the SCF level. From
these calculations, the 2-RDMsub and 1-RDMsub for each
fragment are extracted, and the total 1-RDM and 2-RDM are
then reconstructed. Thus, for each fragment, atom-centered
orbitals belonging to each subsystem are defined. As Van der
Waals systems are dispersive ones, one must be able to calcu-
late the dispersive energy, which decreases as r−6 [33], with
a good accuracy. Molecular fragments (fragments of type I)
are defined as in our previous work [10]. A second type of
molecular fragments is needed for the calculation of the dis-
persive energy, i.e., non-contiguous fragments (fragments of
type II). The two types of fragments in the case of a linear
chain He6 are shown in Fig. 1. Fragments of type I are com-
posed of two adjacent atoms, whereas fragments of type II
involve two atoms that are separated by at least one atom, and
are required for the description of long-range interactions.
For example, one fragment of type II called IIA includes
the first and third atoms in Fig. 1, another one called IIB
includes the second and fourth atoms. It is necessary that the
two types of fragments contain the same number of electrons
and hence the same number of occupied orbitals to avoid a

Fig. 1 Two types of fragments (I and II) used in the 2-RDM-R method.
We have represented two fragments of type I (I X and I Y) and two of
type II (II X and II Y)

costly renormalization process of the elements of the 2-RDM
and 1-RDM obtained during the reconstruction process. This
has been made in order to clear the algorithm. Moreover, we
decided to consider only two-electron fragments, in order
to prove that the method could supply accurate results for
Van der Waals systems by using small fragments only, and
implying therefore a low computational cost. However, in the
case of large systems with long-range interactions, it would
be possible to use larger fragments (under the condition that
the size of the fragment remains small in comparison to the
whole system).

The obtention of the total 1-RDM and 2-RDM depends
on the type of fragment used. For fragments of type I labeled
{A, B, . . . , I }, the total 1-RDM can be expressed as

if (i, j) ∈ A, 1�iσ
jσ = 1�iσ

jσsub A
(14)

and

ifi ∈ A and j /∈ A, 1�iσ
jσ = 0 (15)

where the subscript sub means that a given element has been
obtained from a calculation on the considered fragment.

The elements of the 2-RDM are then obtained from the
cumulant expansion (13):

if (i, j, k, l) ∈ A, 2�
iσ, jσ ′
kσ,lσ ′ = 2�

iσ, jσ ′
kσ,lσ ′

sub A
(16)

if (i, k)∈ A and ( j, l) ∈ B, 2�
iσ, jσ ′
kσ,lσ ′ = 1�iσ

kσ ′
sub A

1�
jσ
lσ ′

sub B

(17)

if (i, l)∈ A and ( j, k)∈ B, 2�
iσ, jσ ′
kσ,lσ ′ =−1�iσ

lσ ′
sub A

1�
jσ
kσ ′

sub B

(18)

Fragments of type II need to be considered to calcu-
late some elements of the 2-RDM that cannot be satisfac-
torily approximated by a product of the corresponding ele-
ments of the 1-RDM. Concerning the elements of the 1-RDM,
these fragments represent non-neighbor atoms and thus the
only non-negligible elements of the 1-RDM which can be
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Fig. 2 The principle of the “Antisymmetrized approximation” is described in terms of diexcitations considered as a function of the distance D
separating two non-neighbor atoms He1 and He3 (He1 and He3 constituting a whole fragment of type II defined in Fig. 1). d is the cut-off radius
beyond of which the approximation is done. This principle is only used for fragments of type II (see Fig. 1)

extracted from such fragments are best approximated by cal-
culations over fragments of type I.

To treat type II fragments, the “antisymmetrized approx-
imation” [2] is introduced by defining a cut-off radius d .
This approximation consists in neglecting ionic forms and
taking only into account neutral forms which leads to in-
creased computational savings. A graphic representation of
this approximation is illustrated in Fig. 2. Thus, to summarize
the calculations on fragments of type II, labeled {α, β, κ . . .},
one has:

if (i, j, k, l) ∈ α and (i, j, k, l) /∈ A and [i jkl] < d,

2�
iσ, jσ ′
kσ,lσ ′ = 2�

iσ, jσ ′
kσ,lσ ′

subα,
(19)

if (i, j, k, l)∈α and (i, k)∈ A and ( j, l)∈ B and [i jkl]>d,

2�
iσ, jσ ′
kσ,lσ ′ = 2�

iσ, jσ ′
kσ,lσ ′

subα

(20)

For all the other cases, Eqs. (17), (18), and (19) have been
used.

The total electronic energy can then be expressed in terms
of the reconstructed 1-RDM and 2-RDM (3). Note that the
mean value of any observable C [13] which can be expressed
as a bielectronic operator can be deduced from the recon-
structed 2-RDM:

〈C〉 = Tr( 2� C). (21)

Although the formalism appears to be quite straightfor-
ward, one has to choose with caution the fragments and check
carefully some conditions that the reconstructed 2-RDM and

1-RDM must fulfill. The N -representability conditions are
well suited for this task as will be shown in Sect. 3.2 for the
test case He6.

This antisymmetrized approximation has been previously
proposed by Lee et al. [34] in an truncated ansatz of MP2.
These authors considered double excitations implying three
centers where one excitation involved one center and the other
one two centers separated by a distance smaller than a pre-
defined cut-off radius.

2.3 The EPV terms implied by the fragmentation
of the diexcitations

The main reason is a size-extensivity (|�total〉 = |�A〉×|�B〉,
where A and B are non-interacting subsystems) error when
we make successive SDCI calculations on each fragment.
Indeed, we allowed forbidden diexcitations due to the sep-
arability of diexcitations introduced by the 2-RDM recon-
struction method.

In the case of a system composed of two non-interacting
subsystems, A and B, one has

CrAsA
i A jA

⊗ CtB u B
kBlB

= CrAsA
i A jA

CtB u B ,
kBlB

(22)

where the coefficients C are the coefficients of the diexcita-
tions from CI calculations.

Here (i A; jA), (kB; lB) and (rA; sA) (tB; u B) represent
occupied and virtual orbitals belonging to fragments A and B,
respectively. ⊗ represents the normal product and contains
the ordinary product as well as all the products generated
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by all the possible permutations between the eight orbitals
considered.

In the case of a complete system, the wave function can
be written using the intermediate normalization scheme:

|�〉 = |
0〉 +
∑

Crs
i j a+

r a+
s a j ai |
0〉 + · · · . (23)

By performing a calculation on each fragment, it is pos-
sible to express the SD-CI equations as:

E = E0 +
∑

Crs
i j 〈i j |rs〉 , (24)

(〈H〉tu
kl − E0) Ctu

kl 〈kl|tu〉 =
∑

i jrs

Crs
i j

〈

tu

kl

∣∣ H
∣∣∣
rs

i j

〉

+
∑

i jrs

Crstu
i jkl

〈

tu

kl

∣∣ H
∣∣∣
rstu

i jkl

〉
,

(25)

with 〈H〉tu
kl = 〈

� |H | 
tu
kl

〉
and 
tu

kl = a+
t a+

u al ak |
0〉.
By performing separate calculations on each fragment,

one includes diexcitations that are not allowed in SD-CI cal-
culations on the whole system. This fact can easily be seen
by considering the EPV terms [35] related to four orbitals
(k, l, t, u) where (k, l) are occupied and (t, u) virtual orbi-
tals.

EPV(tu
kl ) =

∑
Crs

i j 〈i j |rs〉 , (26)

where at least one of the four orbitals (i, j, r, s) corre-
sponds to one orbital of the set (k, l, t, u). The EPV terms
can be seen as disconnected diagrams between two fragments
but with at least one common orbital.

The SD-CI equations can then be extended as:

(〈H〉tu
kl − E0 − EPV(tu

kl )) Ctu
kl 〈kl|tu〉

=
∑

Crs
i j

〈

tu

kl

∣∣ H
∣∣∣
rs

i j

〉
+

∑
Crstu

i jkl

〈

tu

kl

∣∣ H
∣∣∣
rstu

i jkl

〉
.

(27)

Solving this equation will avoid taking into account the
forbidden diexcitations. By considering the EPV terms in SD-
CI equations, it is possible to include the repulsive dynamical-
correlation effects between electrons, a major effect at short
distances. This implies that, the EPV terms being neglected,
the reconstructed 2-RDM is not strictly N -representable, and
the total electronic energy is lower as the exact one. A solu-
tion to this drawback of the method could consist in select-
ing diexcitations when doing calculations on each fragment
in order to take into account the EPVs, although this will
not totally solve the problem of the size-extensivity of the
2-RDM-R method.

3 Application to Helium clusters

In this section, the method proposed above is illustrated
through an application to the computation of the dispersion
energy of Helium clusters.

3.1 Computational details

A linear chain of Helium atoms, which is a Van der Waals
system characterized by pure dispersion bielectronic interac-
tions, was considered. In a first step, a small basis set (ANO-l
2s) [14] was used in order to check all the desired N -repre-
sentability conditions and compare the reconstructed 2-RDM
with the FCI one although this basis set does not permit a
good description of dispersion effects. The interatomic dis-
tance was varied from 2.5 to 6.0 Å. The localization was done
with the computer suite of programmes of Maynau et al. [36]
to obtain atom-centered orbitals. Projecting the local guess
orbitals on the SCF delocalized ones to obtain local orbi-
tals of Hartree-Fock quality gave better results. To check that
the method effectively lowers the size-consistency error of
SD-CI calculation, calculations were done on each fragment
with the CASDI [37] program, keeping the rest of the system
frozen at the Hartree-Fock level. The new code gathers then
the elements of the 1-RDMsub and the 2-RDMsub to calcu-
late the total 1-RDM and 2-RDM according to the 2-RDM-R
formalism presented in the previous section. Moreover, the
algorithm has been implemented to allow direct calculations
of the elements of the 1-RDM and the 2-RDM in order to
avoid storage problems.

3.2 Results of the study of the linear chain He6 in a small
basis set

We have checked the N -representability conditions given by
equations D, Q, G, and trace conditions for the 2-RDM
(9), (10), (11), and (12). The reconstructed 2-RDM auto-
matically fulfils the hermiticity and symmetry/antisymmetry
conditions with respect to a permutation of a particle or a
spinorbital, respectively (4), (5), and (6). The D, Q, and G
conditions imply the diagonalization of the corresponding
matrices and the positivity of their eigenvalues.

Thus, these matrices were diagonalised in the set of the
geminals gμ(functions of two particles) expressed as anti-
symmetrised products of the orbitals {ϕi }:
gμ(r1; r2) = 1√

2
(ϕi (r1)ϕk(r2) − ϕi (r2)ϕk(r1)). (28)

In this geminal basis, one has the relation:

2�μ,ν = 2 2�
i, j
k,l . (29)

Moreover, the 2-RDM can be considered as a 2×2 blocks
matrix:

2� =
∥∥∥∥

2�α,α 2�α,β

2�β,α 2�β,β

∥∥∥∥ . (30)

For singlet configurations,

2�α,α = 2�β,β and 2�β,α = 2�α,β. (31)

The blocks 2�α,α and 2�β,α were considered separately
in order to check the D, Q, and G conditions.

For the 1-RDM, Eqs. (7), and (8) were also checked.
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Fig. 3 Total electronic energies for a linear chain of six Helium atoms in the (ANO-l, 2s) basis set for the 2-RDM-RFCI, 2-RDM-RSDCI, SDCI,
FCI, and SC**2 methods as a function of the interatomic distance r

Two different ways to improve the 2-RDM-R method and
the fragmentation view of the system were investigated.

First, the validity of the antisymmetrized approximation
was explored to determine the best cut-off radius leading to
both a non-negligible computational saving for large systems
and high enough accuracy.

In the second step, some excitations from occupied orbi-
tals belonging to a fragment A to the virtuals belonging to
the neighbour fragment B were allowed for the calculation
done on the fragment A.

In the case of an SDCI calculation on fragment A, the
wave function may be written as:

|�〉 = |�mono〉 + |�di〉 (32)

with

|�mono〉 =
∑

Caσ
iσ

∣∣�aσ
iσ

〉 +
∑

Crσ
iσ

∣∣�rσ
iσ

〉
(33)

and

|�di〉 =
∑

Caσbσ ′
iσ jσ ′

∣∣∣�aσbσ ′
iσ jσ ′

〉
+

∑
Crσbσ ′

iσ jσ ′
∣∣∣�rσbσ ′

iσ jσ ′
〉

+
∑

Caσ sσ ′
iσ jσ ′

∣∣∣�aσ sσ ′
iσ jσ ′

〉
+

∑
Crσ sσ ′

iσ jσ ′
∣∣∣�rσ sσ ′

iσ jσ ′
〉

(34)

with (i, j, a, b) ∈ A and (r, s) ∈ {B, C, . . .},{B, C, . . .}
being the set of neighbor fragments of A.

Then, only the elements of the 1-RDM and 2-RDM corre-
sponding to spinorbitals belonging to A were extracted from
this calculation.

The subsections below present the results obtained con-
sidering the antisymmetrized approximation and the extended
excitation spaces. The N -representability conditions are
tested in order to show the improvement in the reconstruction
of the 2-RDM.

3.2.1 Validity of the antisymmetrized approximation

The energy errors for the antisymmetrized approximation for
values of the cut-off radius d going from 2.5 to 10 Å with
the 2-RDM-RSDCI method were calculated. For d = 4.0 Å,
the method leads to computational efficiency without loss
of accuracy since the energies obtained differ only by 2 ×
10−6 hartree from results obtained without this approxima-
tion. This value is in good concordance with that of Pulay and
Saebo for the LMP2 method [2]. Moreover, this approxima-
tion does not affect the N -representability conditions fulfilled
by our reconstructed 2-RDM and 1-RDM.

3.2.2 Comparison of the results of each method

All the results presented here used the antisymmetrized
approximation with a cut-off radius of 4 Å and SDCI (or FCI)
calculations on each fragment allowing excitations to virtual
orbitals belonging to the neighbor fragments. The results of
the 2-RDM-RSDCI and 2-RDM-RFCI obtained by SDCI and
FCI calculations, respectively, on each fragment, are com-
pared with the SD-CI, the FCI and the SC*2 methods (see
Figs. 3 and 4). The SC*2 method [39] is a size-consistency
correction method for an SD-CI calculation. The 2-RDM-
RFCI results were added to show this.

With the small basis set used the system is found to be
repulsive (the bond length at a very high level of calcula-
tion of He2 is 3.2 Å [38]). The results are encouraging in
the sense that the 2-RDM-R considerably lowers the size-
consistency error of a classical SDCI calculation and implies
a lower computational cost than other corrective methods
proposed in previous works [38,40,41]. At very short dis-
tances (2.5 Å, where the results are the poorest) the error is
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Fig. 4 Zoom of Fig. 3 for an interatomic distance r(r ∈ [2.5; 3.5]) Angströms and for the SC**2, FCI and 2-RDM-RFCI methods

only of 2.7115×10−4hartrees for the 2-RDM-RSDCI method
whereas it amounts to 2.0293 × 10−3 hartrees for a classical
SDCI calculation. Moreover, the computational cost of the
2-RDM-RSDCI method grows as Nsub I+sub I I ∗ (n/NsubI )

2

(N/NsubI )
4 whereas the computational cost of the SDCI

method grows as n2 N 4 [1], where n is the total number
of occupied orbitals, N the total number of basis functions,
NsubI the number of fragments of type I and NsubI+subI I the
total number of fragments (type I and type II) . Actually, the
accuracy of the 2-RDM-RSDCI method is not constant versus
the FCI results. the method being more reliable for distances
larger than the equilibrium one.

3.2.3 Effects of the choice of the virtual space for each
fragment

Not allowing electrons to go to virtual orbitals belonging to
neighbor fragments, the 2-RDM-RFCI electronic energy for
short distances is lower than the FCI one, which proves that
the reconstructed 2-RDM does not fulfill the known N -rep-
resentability conditions. This problem occurs also in den-
sity matrix minimisation method [25] or in the Contracted
Schrödinger Equation [24]. We have represented in Table 1
the evolution of the N -representability conditions fulfilled by
the reconstructed 2-RDM obtained at a distance of 2.5, 3.2,
and 6.0 Å for a virtual space limited to the fragment itself (1
to 1 excitation space) for the 2-RDM-RFCI and the 2-RDM-
RSDCI methods. Only negative eigenvalues of the D, Q, and
G matrices smaller than −10−6 were considered.

In Table 2, we give the N -representability conditions ful-
filled by the reconstructed 2-RDM for the 2-RDM-RSDCI and
the 2-RDM-RFCI methods in the case of the neighbor exci-
tation space for an interatomic distance of 2.5 Å since this

Table 1 The evolution of the N -representability conditions obtained at
variable distances

rÅ Conditions α, α Block α, β Block

2.5
D matrix 20 (17) 18 (16)
Q matrix 20 (17) 18 (16)
G matrix 0 (0) 0 (0)

Trace error 3.503 E − 5 3.580 E − 5
3.2

D matrix 1 (1) 0 (1)
Q matrix 1 (1) 0 (1)
G matrix 0 (0) 0 (0)

Trace error 3.304 E − 6 3.371 E − 6
6.0

D matrix 1 (0) 0 (0)
Q matrix 1 (0) 0 (0)
G matrix 1 (0) 0 (0)

Trace error 1.96 E − 11 2.7 E − 11

Table 2 The N -representability conditions at an interatomic distance
of 2.57 Å

α, α Block α, β Block

D matrix 20 (1) 10 (0)
Q matrix 20 (1) 10 (0)
G matrix 1 (1) 0 (0)

Trace error 2.080 E − 6 1.082 E − 6

is the only distance for which we can observe discrepancies
between the two different excitation spaces.

The reconstructed 1-RDM does not seem to be affected
by the change of the excitation space and fulfills in a good
manner the N -representability condition checked since only
seven eigenvalues are lower than the given threshold for the
two excitation spaces.

The reconstructed 2-RDM fulfills very well the N -
representability conditions for distances of 3.2 and 6.0 Å for
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both excitation spaces. But, for a distance of 2.5 Å, the quality
of the reconstructed 2-RDM fails in the case of the 1 to 1 exci-
tation space. When the neighbor excitation space is chosen
(see Table 1), we observe a great difference compared to the
2-RDM-RFCI method and find a total electronic energy larger
than the FCI one. The major difference for the 2-RDM-RSDCI

method is related to the trace condition of the 2-RDM where
the error decreases by one order of magnitude. Moreover, if
we scan the reconstructed 2-RDM element by element, only
one type of elements plays a role in the error related to the
value of the trace of the 2-RDM. These elements are of the
type 2�

iσ,rσ ′
iσ,rσ where i and r are, respectively, occupied and

virtual orbitals of the same or different fragments.
In Table 3, the comparison between the values of these

elements according to the excitation space considered (1 to
1 excitation space and neighbor excitation space) are pre-
sented for an interatomic distance of 2.5 Å. The values given
are averaged values because for two atoms A and B, the ele-
ments 2�

iσ,rσ ′
iσ,rσ where i belong to A and r belong to B are of

the same order. The shorter the distance between two atoms
of Helium, the larger is the error without using the neighbor
excitation space. At large distances or even at equilibrium
length, the configurations added in SDCI calculations for the
neighbor excitation space case do not play a crucial role and
can be neglected for the calculation of the 2-RDM. Moreover,
we can expect that for larger basis sets, the difference between
the 1 to 1 excitation space and the neighbour excitation space
would increase.

3.3 Applications to larger systems

3.3.1 Results for He6 in a larger basis set

The linear chain He6 has been considered with a larger basis
set (ANO-l, 4s3p2d). The results obtained are summarized
in Table 4. These calculations have been done to confirm
the necessity of the use of neighbor excitation space and of
type II fragments to obtain the dispersion energy with good
accuracy. Indeed, the present system is known to show a very
shallow energy minimum and represents a hard test for the
2-RDM-R method.

In Table 4, we have presented the energy differences
between the reference taken at the CCSD(T) level and the
SC**2 method or the 2-RDM-RSDCI with the neighbor exci-
tation space consideration and the “antisymmetrized prod-
uct” with a cut-off radius of 5 Å.

Table 3 Comparison between the values according to the excitation
space considered

natom 1–1 Excitation space Neighbor excitation space

0 2.969 E − 05 1.70 E − 06
1 9.038 E − 05 1.94 E − 06
2 9.056 E − 05 3.87 E − 06
3 9.059 E − 05 3.95 E − 06 Ta
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Fig. 5 Energy (ua) of the cluster of He4 (ANO-l 4s3p2d) obtained by the CCSD(T) and 2-RDM-RSDCI methods

In this case, we obtain a bond length shorter by 0.1 Å to
the CCSD(T) one (3.2 Å) and a potential depth 10% larger
than the CCSD(T) one. The SC**2 method gives very good
results with an error of 6.12% only in comparison to the
CCSD(T) results.

However, all along the curve there is a constant shift be-
tween the CCSD(T) solution and the 2-RDM-RSDCI calcula-
tion. The 2-RDM-RSDCI solution is lower than the CCSD(T)
solution and proves that the N -representability conditions are
not fulfilled in a good manner. This fact confirms the theoret-
ical arguments given in Sect. 2.3 and the need for a control
of the diexcitations done on each fragment.

3.3.2 Results for the cluster of He4

We have considered the same basis set of orbitals for the He4
cluster (ANO-l, 4s3p2d). Although this basis set is not large
enough for an accurate description of this Helium cluster’s
properties, our purpose here is to compare the results obtained
with the CCSD(T) ones. Moreover, with the neighbor exci-
tation space, the whole virtual orbitals set has to be consid-
ered for each fragment calculation. Thus, the 2-RDM-RSDCI

method does not present a good computational cost for this
example. Nevertheless, in the case of larger clusters, the com-
putational would tend to grow linearly with the system size.

We have represented in Table 4 the energy differences
obtained for He4 for the CCSD(T) taken as reference, and
the 2-RDM-RSDCI and the HF methods. The computational
cost of the SC**2 method was too high for this example.
We can observe again that the 2-RDM-RSDCI is lower than
the CCSD(T) one but this difference is a constant shift and
does not affect the accuracy of the potential depth. Concern-
ing the accuracy of the 2-RDM-RSDCI calculation, we ob-

tain the depth of the potential energy with an order of 1.5 ×
10−5 hartrees compared to the CCSD(T) solution (1.48 ×
10−4 hartrees). The bond length is found to be 3.2 Å for the
2-RDM-RSDCI. The results are better for the cluster because
the excitation domains considered for each occupied orbital
take into account the whole set of virtual orbitals. For a better
understanding of the results, we have plotted in Fig. 5 the po-
tential curves obtained for the CCSD(T) and 2-RDM-RSDCI

methods.

3.4 Conclusion

It has been shown that the proposed formalism could be suit-
able for the study of dispersion energy effects in weakly
correlated systems. Indeed, the potential wells in the Van
der Waals energy curves of Helium clusters are reproduced
with a good accuracy, despite the smallness of the effects.
The geometrical structures are also well reproduced with the
2-RDM-RSD-CI method. Moreover, this approach allows one
to reduce the size-consistency error of a conventional SD-CI
calculation on the whole system, this level of calculation be-
ing impossible due to its computational cost for the cluster
considered. It has also been shown that in order to obtain
accurate results, it is necessary to consider an excitation do-
main extended to virtual orbitals that do not belong to the
fragment of the considered occupied orbitals.

The method has to be improved concerning the N - repre-
sentability of the reconstructed 2-RDM by taking account of
forbidden diexcitations, when successive configuration exci-
tations on each fragment are considered. More work in this
direction is needed in order to apply the 2-RDM-R method to
larger clusters, where the N -representability problem could
deteriorate the quality of the results.
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